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Cusped rainbows and incoherence effects in the rippling-mirror 
model for particle scattering from surfaces 

M V Berry 
H H Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 9 September 1974 

Abstract. We consider scattering from a corrugated hard surface Z with random moving 
perturbations (a ‘rippling mirror’). Kirchhoff’s approximation enables the classical limit, 
diffraction effects and incoherence to be treated within the same framework. The classical 
rainbow is a curve V in the two-dimensional space of deflections G;  we study the topology 
of V and show that it has cusps whose positions are sensitive to the form of Z. Classically 
the scattering is singular on Z but diffraction softens the singularities; we give the diffraction 
functions to be used near and on smooth parts and cusps of W, and derive criteria for the 
observability of rainbow structure (taking account of surface periodicity which quantizes 
G). Random thermal perturbations of I: blur the diffracted beams; we introduce a simple 
approximation for the blurring function, and this suggests a simple method for inverting 
experimental data to obtain the ‘surface phonon spectrum’, even in cases where ‘multiphonon 
processes’ dominate. 

1. Introduction 

The scattering of beams of particles (atoms, molecules or ions) from solid surfaces can 
give useful information about particle-solid interactions (Toennies 1974). To extract 
this information from the experimental results, however, one requires a workable 
theory, that is a theory that is neither so simple that it fails to describe a wide range of 
phenomena nor so complicated that detailed predictions cannot easily be made. From 
this point of view the most useful theory so far assumes that the interaction potential 
between particle and solid is zero outside a surface Z, and rises suddenly to infinity as 
the particle approaches the solid through I;. This totally reflecting surface has pre- 
dominantly the two-dimensional periodicity of the surface of a perfect solid, but is 
perturbed in a random manner by thermal effects. To describe approximately the scatter- 
ing from this ‘rippling mirror’ the theory employs Kirchhoff s diffraction integral, rather 
than giving an exact treatment based on the wave equation. We use the expression 
‘rippling mirror’ instead of the more common ‘corrugated hard surface’ because we wish 
explicitly to consider the inelastic effects of the time dependence of the random perturba- 
tions of Z. 

The exact quantum scattering from the rippling mirror Z has been discussed in 
detail by Beeby (1972, 1973), while the additional Kirchhoff approximation has been 
used by Garibaldi et a1 (1974), who call it the eikonal approximation. Using a special 
form for I;, these latter authors give a quantum-mechanical analysis of the classical 
surface rainbow discovered by McClure (1970) and Smith et a1 (1969). They also give a 
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formalism for the inelastic and diffuse incoherent scattering that arises from the space- 
and-time-dependent parts of the random perturbation of Z, but they do not discuss the 
nature of this incoherent scattering. 

In this paper we use exactly the same scattering model as Garibaldi et al(1974), but 
we go further, and obtain some rather simple general results. The first concerns rainbows : 
by examining more realistic surfaces Z, which are less symmetrical than that of Garibaldi 
et al, we establish the topology of the classical rainbow in the image domain, that is, in the 
two-dimensional space of directions of the scattered particles. In this space the rainbow 
consists of two closed curves (‘caustics’), one inside the other ; the inner curve has several 
cusps (the number depends on the symmetry of the lattice). Our second result concerns 
the diffraction functions that must be used to describe the quantum-mechanical softening 
of the classical rainbow singularities near smooth and cusped caustics. We discuss the 
conditions under which these phenomena could be observed. Our final result concerns 
incoherent scattering : we derive a simple approximate formula, of apparently rather 
general applicability, giving the diffuse and inelastic incoherent scattering explicitly in 
terms of the spectrum of the random perturbations of C ; the formula gives a very simple 
method, in principle, of determining this spectrum from scattering data, and may solve 
a puzzle concerning ‘multiphonon processes’ (Beeby 1973). 

Before beginning our main argument we discuss briefly the limitations of the model 
used. By approximating the actual smooth particle-solid potential by the (repulsive) 
hard mirror Z, we are neglecting the effects of the attractive potential well beyond the 
hard core. The principal such effects are a modification of the incident-beam wavevector 
near the mirror (Beeby 1971, Garibaldi et al 1974), and the existence of surface bound 
states into which the incident particles may fall (Lennard-Jones and Devonshire 1937, 
Cabrera et a1 1970, Wolken 1973). By employing Kirchhoff diffraction theory, we are 
neglecting multiple reflections between different parts of the surface (Beeby 1972, 
Beckmann and Spizzichino 1963). Such reflections will be insignificant if the total 
variation AB of surface slopes is small and if the incident beam does not graze the surface ; 
in fact A0 does not exceed about lo” (Nahr, private communication), so that the use of 
Kirchhoff’s integral should not involve any serious approximation. In addition, our 
scattering model implicitly neglects recoil effects, that is, any influence of the projectiles 
on the solid ; this will be justified if the projectiles are light and the solid atoms heavy and 
tightly bound. 

2. Kirchhoff diffraction theory 

We employ Cartesian coordinates r = (x, y, z) to locate points in space. In the ‘hori- 
zontal’ plane z = 0 we locate points by R = (x, y). The form of the rippling mirror Z 
at time t is defined by its height h(R, t )  above the plane R. The function h is the sum of a 
periodic stationary part h,(R) and a time-dependent random perturbation h,(R, r ) ,  ie 

(2.1) h(R, t )  = hp(R) + h,(R, l), 

hp(R +ma + nb) = h,(R), 

where 

(2.2) 
a and b being unit vectors in the surface lattice and m and n being integers. 

The incident beam is represented quantum-mechanically by a single plane wave 
$inc(r, t )  with frequency coo (corresponding to an energy E ,  = ho,) and wavevector k,. 
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The wavelength is lo = 27r/k, = h/(2n1E,)”~,  where m is the mass of the particles. The 
horizontal component of k ,  is KO and the vertical component ko2 is negative because the 
wave is approaching C from above. Obviously K O  < k ,  for physically interesting waves. 
The scattered particles emerge in different directions k and with different frequencies w 
(because of the Doppler shifts caused by the time dependence of hr); therefore we re- 
present them by a wavefunction.$&, t )  which is a sheaf of plane waves receding from X, 
so that the vertical component k ,  of k is positive if the magnitude K of the horizontal 
component K is less than k ,  and positive imaginary (corresponding to evanescent waves) 
if K > k .  Thus we can write I(linc and $sc in the form 

$inc(r, t )  = exp[i(K. R-  lk~ , lz  - oOt)l 

$&, t )  = ss dK Jym dwa(Ko, wo ; K, 0) exp[i(K. R + k,z - wt) ] ,  (2 .3)  

where a is the amplitude of the wave specified by Kand w (we could specify each wave by 
its three-dimensional wavevector k, but the form written is more useful). 

We wish to calculate the amplitudes a. This we do by using the boundary condition 
that the total wave $inc+$sc  vanishes on C. Strictly speaking the form (2 .3)  for $sc is 
exact only if z exceeds the largest value of h(R, t ) ;  for smaller z (but still above X) there 
will be small-amplitude waves that have been scattered from the hills down into the 
valleys of C. This effect will cause multiple scattering, and we neglect it. Thus the boun- 
dary condition on C gives the following integral equation for a : 

exp[i(Ko . R - Iko,lh(R, t ) -  woi)] 

= - 11 dK !:m d o a ( K o ,  wo ; K ,  w )  exp[i(K . R + k,h(R, t )  - wt) ] .  (2 .4)  

This holds for all R and t .  Unfortunately this equation cannot be solved exactly for a in 
closed form. But we notice that if h is zero or varies linearly with R and t we can use 
Fourier’s theorem, to obtain 

MO, wo ; K ,  4 

This is exact if 

h(R,t) = P . R + v t  (2 .6)  
which corresponds to a flat surface inclined at an angle tan- IPI (to the horizontal), 
whose contours are perpendicular to Pand which moves upwards at the constant speed U. 
Then (2.5) gives 

(2 .7)  
It can be verified that this correctly describes specular reflection from KO into a direction 
K determined by the slope P of C, with the frequency Doppler shifted from wo to w by 
the motion of C. 

Kirchhoff diffraction theory consists in using (2 .5)  for general surfaces C, which do 
not have the simple form (2.6).  This will obviously be a better approximation, the smaller 
are the curvatures and accelerations of C. The principal advantage of (2 .5)  is the variety 
of phenomena it can describe. It is the simplest expression describing scattering from 

a ( K o , ~ o ;  K, W )  = -&KO - K+(lko,l +kZ)P)6(w-wo-((ko,l + k , ) ~ ) .  
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surfaces whose deviations from flatness may range from small perturbations to hills and 
dales many wavelengths in extent, for which classical mechanics gives a good description 
for the reflection (see Q 3). This is particularly useful in particle-surface scattering, 
because it is often the case that reflection of h, (cf (2.1)) may be treated classically or 
semiclassically while h,  is so small that its effects must be calculated using diffraction 
theory. Another property of (2.5) is that it gives at least a first approximation to the 
evanescent waves, for which K > k.  

Experimentally, what is measured is the current of particles (far from the surface) 
travelling in a small range of directions about a chosen direction K with energies lying 
within a small range about a chosen energy ho. If the surface is infinite in extent, or the 
experiment infinite in duration, then this current will be infinite ; therefore we calculate 
the current I per unit area of C per unit time. If C has a (large) illuminated area d 
and the experiment lasts for a (long) time Z then the current is proportional to 

apart from purely kinematic factors (for a discussion of these, see Garibaldi et a1 1974). 
We shall find that this expression always gives sensible results. For example, in the case 
of the flat surface (2.6), laJ2 would involve squares of delta functions (see (2.7)). These 
simplify as follows : we write, symbolically, 

= q ~ ) s ( ~ ) a s / ( 2 ~ ) 3 .  

Thus (2.8) gives, for this case, 

I = 6(K-Ko +(lko,l+ k,)P)~(oo-o-(lko,l+ k,)u) ,  

an expression corresponding to a finite total intensity. 

(2.9) 

(2.10) 

3. Perfect periodicity : topology of classical rainbows 

If C is periodic, that is, if we are ignoring the effects of thermal disturbances, we can set 
h,  in (2.1) equal to zero, and expand in a Fourier series the function of h,(R) that appears 
in the diffraction integral (2.5).  Then, using (2.8), the intensity I becomes 

We have reproduced here the well known result that in this case the scattering is elastic 
(o = coo), and the emergent particles appear as a series of diflracted beams in directions 
K = KO + G, where G are the two-dimensional vectors of the reciprocal surface lattice. 
The strength of the Gth diffracted beam is (S,I2, where the diffraction amplitude S ,  is 
given by 

S ,  = f JJ dR exp{ - i[G . R +(lkoZI + k,)h,(R)]} .  
unit cell 

(3.2) 

( A  is the area of the unit cell.) 
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The hemisphere of directions of scattered particles corresponds to the circle 
14 < ko  in the ‘image’ plane K. This circle has area nk; . Each diffracted beam ‘occupies’ 
a unit reciprocal lattice cell in Kspace. Each such cell has area 4r12/A. Thus the number 
Jf of observed diffracted beams is 

Now, under nearly classical conditions we may regard 2, and h as small, or m and k ,  as 
large. Thus Jf is large, the diffracted beams are densely distributed in direction, and the 
‘deflection’ G = K - K O  in (3.2) may be regarded as a quasi-continuous variable. We 
wish to discuss the form of S, under these semiclassical conditions. 

The important point is that when k,( = k )  is large the integrand of (3.2) oscillates 
rapidly as R traverses the unit cell, and most of the area of integration gives no con- 
tribution, because of destructive interference. However at isolated points RAK,, G) 
where the phase of the integrand is stationary this cancellation does not occur, and we 
obtain contributions to S,. The stationary points Ri are given by 

G = - ( lkoJ  + k:)Vhp(Ri). (3.4) 

But this is exactly the condition for a surface point R to reflect a classical particle specul- 
arly from KO to KO + G, so that we have found that only the classical paths contribute 
to the quantum diffraction integral (3.2) when ko is large. In interpreting all our sub- 
sequent classical and semiclassical formulae, i t  should not be forgotten that (3.4) is 
really an implicit equation for G, since this vector appears also in 

k,( = [ k 2  - (KO + G)2]1’2) ;  

for gently-varying surfaces C this dependence of k ,  on G is weak and in the general case 
it can be checked (in some cases laboriously) that the dependence does not invalidate 
any of our conclusions (eg figure 6 for the form of the ‘rainbow line’). 

If the points Ri are sufficiently well separated for the integrand in (3.2) to oscillate 
many times between them, we may use the method of stationary phase to approximate 
S,. This involves expanding the phase in (3.2) about each point Ri up to terms in ( R -  Ri)2,  
and evaluating the resulting Gaussian integrals. We arrive at the following ‘simple 
semiclassical’ formula for the diffraction amplitudes : 

(3.5) 

where the summation is over all points R, reflecting particles with deviation G, and 

minimum 

maximum ;‘i = - i if the phase [. . .] in  (3.2) has at Ri a (3.6) (i I saddle point, 

and where X ( R )  is the Hessian of h p  at R, defined by 

(3.7) 

For the gently-varying surfaces dY with which we are concerned, it is helpful to visualize 
X ( R )  as the Gaussian curvature of X at R, since this quantity differs from X only by a 
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factor [l + (Vh,)2]-3’2, which in turn differs from unity by only a few per cent. The 
Gaussian curvature is the product of the two principal curvatures at R, and is positive 
where I: is concave or convex, and negative where I: is saddle-shaped. 

Experimentally what is observed is IS,(2 (equation (3.1)) and the simple semiclassical 
result (3.5) shows that this quantity consists of a set of ‘steady’ terms from each classical 
path, plus cross terms describing interferences between different classical paths. In the 
extreme classical limit these interference oscillations (of I as a function of G or KO) 
are too rapid to be detected, and any experiment would detect only their average, which 
is zero ; in this case (3.5) gives 

Thus the Gaussian curvature of at Ri is an inverse measure of the strength of the 
contribution from the path i .  This can be seen in a purely classical way as follows : from 
(3.7) and the specular condition (3.4), it follows that X ( R )  is proportional to the Jacobian 
of the mapping from ‘surface space’ R onto ‘deflection space’ G, KO being kept constant ; 
since in the incident beam particles are uniformly distributed over R, this Jacobian 
IdG/dRJ is an inverse measure of the density of particles scattered into direction G. 

For a given K ,  , the intensity scattered with deflection G will be infinite whenever 
any contributing surface point R,(G, KO) lies at a place where K(R) vanishes. Now the 
equation 

X(R)  = 0 (3.9) 

defines a line 2’ on the surface ; each point R of 9 defines an ‘image’ point G according 
to (3.4), so that the image of 9 is also a line, ‘$7, in the deflection space G. We call %? 
the rainbow line; any of the (densely distributed) diffraction spots lying near % will be 
very intense, so that % should show up clearly on intensity plots across the G plane. 
In optical terminology 55 is a ‘caustic’ of the reflected ‘rays’-it is the locus of rays for 
which angular focusing occurs. Mathematically, is a singularity in the mapping from 
G back to R. As we cross % by varying G, then two (or sometimes three) surface points Ri  
coalesce; thus the simple method of stationary phase leading to (3.5) is not applicable, 
and S G  is actually not infinite but merely large, as we shall discuss in more detail in 0 4. 

Thus according to classical mechanics the observed scattering should be dominated 
by the line %? on G. What is the form of this rainbow line? To answer this we need first 
to find the form of the line Y on R, defined by (3.9), that generates V. Let the centres of 
the atoms in the top layer of the solid define the lattice points in R. Then the surface Z, 
considered as a landscape above the R plane, will have summits (full circles on figure 1) 
at the lattice points, because of the strong repulsive forces that the surface atoms exert 
on the incoming particles. At  the corners ofeach Wigner-Seitz lattice cell-that is at the 
point farthest from atoms-Z will have minima, or immits (a terminology introduced by 
Cayley 1859; see also Maxwell 1870; immits are marked open circles on figure 1). 
On each side of a lattice cell (broken line in figure 1) there must be a saddle point (crosses 
on figure 1). Let us assume that we are dealing with the simplest case where these are 
the only extrema of Z ; it is always possible to introduce more summits, immits or saddles 
by introducing more atoms into each unit cell of the surface layer. Figure 1 has been 
drawn for a rectangular lattice ; for non-rectangular lattices the Wigner-Seitz cell would 
be hexagonal, and each summit would be surrounded by six immits and six saddles. 
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Figure 1. Features of the periodic surface Z : - - - - - - lattice lines; 0 summits; 0 immits; 
x saddles; __ locus Y of points of zero Gaussian curvature; 0 points that must lie on 9. 

Now the required line Y is the locus of points of zero Gaussian curvature, that is 
the locus of points where at least one of the two principal curvatures of Z vanishes. 
At a summit, both curvatures are (say) negative, at an immit both are positive, at a 
saddle one curvature is positive and one is negative. Therefore between a saddle and a 
summit, or a saddle and an immit, we must cross 9 2n - 1 times, where n is an integer ; 
between a summit and an immit both curvatures must change an odd number of times 
so we must cross 9 2n times. The simplest case is n = 1 ,  and points satisfying these 
conditions are marked by open squares on figure 1 ,  and they are joined by a possible 
line 9 (marked full curve). Thus Y consists of closed curves surrounding the regions 
of positive X containing summits and immits, while the open region of negative curva- 
ture, containing saddles, extends through the lattice. The curves Yl , around summits 
(figure l), will generally not have the same shape as the curves 9,, around immits, 
because summits and immits are not symmetrical features of Z-they correspond respec- 
tively to repulsive regions near atoms and relatively attractive 'interstitial' regions, so 
that C varies more gently near immits than near summits. (Note that it is not possible 
to satisfy the above conditions on the curvatures if Y surrounds the saddles.) 

The rainbow line V in G is generated from 2 by (3.4). The two closed curves Yl 
and Y2 (figure 1 )  will generate two closed curves 'B, and V, in G. We expect 'B, to lie 
within VI, because the slopes Vh,(R) of C are smaller near immits (ie near 9,) than near 
summits (ie near S1). To find the form of VI and 'B2 we first introduce the special surface 

h p ? )  = ho( 5) + cos( ?)) , (3.10) 

in which summits and immits are symmetrical. For this form of C it is easy to solve 
(3.10) for 9, and we find (as do Garibaldi et a1 1974) that Y1 and 9, touch in this special 
case, and form the following set of intersecting lines across R : 

x = (m + +)a12 

y = (n + &b/2 
(3.11) 

where m and n are integers. Now we use (3.4) and find that the image %? is a single rectangle 
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given by 

(3.12) 

In the general case, h,(R) is given not by (3.10) but by 

h,(R) = h r ) ( R )  + Ehy)(R), (3.13) 

where E is a perturbation parameter and hF’(R) is any periodic surface not symmetrical 
in summits and immits. Then our general topological arguments tell us that the rectan- 
gular rainbow line (3.12) must split into two as soon as E departs from zero. How does 
this splitting occur? To answer this we use ‘catastrophe theory’; this is a branch of 
differential topology based on a theorem by Thom (1969, 1972) concerning singularities 
of mappings defined by gradients (in our case the mapping is G R,  defined by the 
inverse of (3.4)). The theorem states that the singularities can only be of certain restricted 
types. In our two-dimensional case the singularities in the plane Care lines %, as we know, 
which are smooth except at isolated points where they may have cusps. A cusp is a 
point where a curve reverses direction as it is traversed; the simplest example of a cusp 
is the point x = y = 0 on the curve y 2  = x3. Thus we expect the rainbow line $$ to 
have cusps. To see how these cusps arise we consider the rainbow surfuce $$ generated by 
adding the third dimension E to the space G ;  this corresponds to looking at all the rain- 
bows from the family of C’s defined by (3.13). The rainbow surface must have two 
sheets Y1 and W2 which touch at E = 0 where it has a rectangular section. Each corner 
corresponds to a singularity in three dimensions, and the only permitted singularity in 
which two sheets touch at a corner is, by Thom’s theorem, the hyperbolic umbilic, 
illustrated in figure 2. Away from the singularity, that is for nonzero values of E where 

Figure 2. Hyperbolic umbilic catastrophe 

the symmetry of C between summits and immits is broken, Y has split into two curves, 
as expected, and the inner one has a cusp where hr)(R) gave a corner. Thus we expect 
the rainbow lines to take the form shown on figure 3, which is the main result of this 
section. (For non-rectangular lattices the Wigner-Seitz cell is hexagonal and there 
would be six cusps.) 

These conclusions are supported by a detailed analysis of the special case for which 
the symmetry-breaking surface modification hF)(R) of equation (3.13) is given by 

hF)(R) = ho cos( F) cos( ; (3.14) 
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G” 
t 

Figure 3. General form of rainbow lines: V, and V2 originate near summits and immits of 
Z respectively. 

the rainbow lines V have precisely the form shown on figure 3. In addition we find that 
the separation A, in the G plane between %, and W2 at a corner (figure 3) is, for small E 

(3.15) 

It is also easy to calculate the separations A, and A, between Vl and V2 (figure 3) along 
the G, and G, axes, and we find 

(3.16) 

The computations of McClure (1970, 1971) which gave the first theoretical evidence 
for rainbows in the classical scattering of particles from surfaces, were insufficiently 
detailed to show the cusp structure clearly. McClure presents intensity maps of the 
scattering as a function of polar angles 6’ and 4 (in our notation, G, = k sin 8 cos 4 - KO,, 
G,. = k sin 6’ sin 4- KO!). He uses a Monte Carlo procedure which averages over paths 
emerging in angular ‘bins’ whose widths are A8 = 1’ and 3 O ,  A 4  = 5’. This is a little 
too coarse, and obscures much of the detail in figure 3 ; nevertheless, his intensity maps 
do show ‘ridge’ and ‘tentpole’ features, probably corresponding to smooth parts and 
cusps of the rainbow line. Strictly speaking the ridges and tentpoles should be infinitely 
high, because the classical rainbow strength is infinite (although integrable !) ; however 
the Monte Carlo procedure does not use the formula (3.8) for the contribution from each 
path but instead calculates directly the Jacobian Id(O,4)/dRI, and thus averages over the 
angular bins. (In McClure’s calculations (3.8) would not apply, because he uses a realistic 
smooth atom-surface potential rather than the mirror C.) 

The shape of the rainbow line (figure 3) could in principle give detailed information 
about the surface Z;  this is clear from (3.15) and (3.16), which depend differently on c. In 
practice the details of V will be blurred, to a greater or lesser degree by diffraction and 
by thermal motion of C ; we consider these effects in more detail in the next two sections. 
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4. Perfect periodicity: sewing the quantum flesh on the classical bones 

There are two kinds of quantum or diffraction effect which conspire to obscure the 
details of W. The first arises because G is not a continuous variable but consists of 
reciprocal lattice points ; thus patterns in the G plane (eg figure 3) are sampled at discrete 
points, and these will usually miss the rainbow line. The second is that the function 
IS,12 (equation (3.1)) which is sampled is not given precisely by the classical or semi- 
classical formulae (3.8) or (3.5), which diverge on %, but by the diffraction integral (3.2), 
which is large but finite on %. Expressing these effects in another way, we can say that 
interference between waves emerging from different points in the same lattice cell in R 
blurs out the rainbow line into a diffraction pattern in C, while interference between waves 
emerging from equivalent points in different cells quantizes G so that this diffraction 
pattern is sampled at discrete points. 

First we discuss the blurring of W by diffraction. Near to a smooth portion of W 
the semiclassical formula (3.5) breaks down because two contributing surface points 
(say R ,  and R,)  coalesce, thus violating the condition for the applicability of the method 
of stationary phase. In these circumstances we require a uniform approximation to S , ,  
that is, a formula for (3.2) which is valid on and near V and which reduces to (3.5) far 
from %. Uniform approximations to integrals were invented by Chester et a1 (1957), 
introduced into scattering theory by Berry (1966) (see also Berry and Mount 1972), and 
shown to be numerically extremely accurate by Mount ( 1973). 

In the present problem the result is that the contribution Spinbow) from R ,  and R ,  
in (3.5) must be replaced by the following formula, involving Airy  functions Ai (Abramo- 
witz and Stegun 1964) and their derivatives Ai’ : 

1 x Ai ’[ - (3@, - @1))2’3] 

Here @ denotes the phase 

@ E - [C.  R + (Iko,l+ k,)h,(R)] 

in (3.5), and the subscripts 1 and 2 refer to the two contributing points R ,  and R , .  On 
the illuminated side of the rainbow W the two Gaussian curvatures X, and Xz will have 
opposite signs, and we have chosen R ,  so that Xl is positive and assumed that 0, is a 
minimum. The real positive root of (0, - @ , ) , I 3  is taken, so that the Airy functions have 
a negative argument and are thus oscillatory functions (figure 10.6 of Abramowitz and 
Stegun 1964) ; equation (4.1) then describes the ‘supernumerary rainbows’ (Airy 1838, 
Ford and Wheeler 1959). For deflections G on the dark side of V there are no real paths 
R ,  and R ,  , and we require complex solutions of (3.4); we can then take a real negative 
root of (a2 -@1)213, and the Airy functions have a positive argument, and decay exponen- 
tially ‘into the shadow’. On 59 the expression (4.1) is finite, and a little analysis shows that 
IS,12 rises to a value of order (h0/A0)1’3 larger than in the ‘classical’ region away from 
(ho is a measure of the maximum excursion of C from the R plane). By analysing the 
special surface (3.10) Garibaldi et a1 (1974) also discuss the diffractive softening of the 
rainbow singularity ; they obtain an expression for Spinbow) in terms of Bessel functions 
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of large order; these can, however, be uniformly approximated by Airy functions 
(Abramowitz and Stegun 1964) so that the formalism of these authors is a special case 
of ours. 

Near a cusp of $9, even (4.1) breaks down, because not two but three points Ri coalesce. 
Instead of Airy functions we must use the following function to describe the diffraction 
(Pearcey 1946, Berry and Nye 1975): 

C ( X ,  Y) drexp[ i ($-T+tY)] .  (4.3) 

The variables X and Yare smooth distortions of G ,  and G , ,  the manner in which the 
distortions must be carried out (to obtain a uniform approximation) being explained 
by Connor (1973). It turns out that on the cusp itself IS,I2 rises to a value of order 
(ho/Ao)1’2 larger than in the ‘classical’ region away from %?, so that the cusps are the 
most strongly diffracting parts of the rainbow line. A contour map of IC(X, Y)(’ con- 
stitutes figure 4;  it is seen how the Airy oscillations appear as we cross V far from the 
cusp at X = Y = 0. 

X 
- 3  - 2  - I  0 I 2 3 4 5 

3’ 

Figure 4. Contours of the cusp diffraction function IC\’ (equation (4.3)). 

These results concerning the uniform approximation of the diffraction integral 
(3.2) are summarized in figure 5. 

Now we consider how the visibility of rainbows is affected by the quantization of G. 
The principle is that to observe clearly any feature in the G plane it must be densely 
covered with diffraction spots. Consider for example, the separation A, between rainbow 
lines Wl and y along the G, axis (figure 3) ; A, is given by equation (3.16). The G, spacing 
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Us sirnpk semidassical 
formula ( 3 . 5 ) ;  intensity is O ( I )  

lainbar line 

v? 
\ 

Figure 5. Summary of semiclassical diffraction formulae. 

of diffraction spots is 27r/a. Therefore the number Ax of diffraction spots between V1 
and V2 is 

(4.4) 

where Bo and 8 are the angles made with the z direction by the incident and scattered 
particles. For and q2 to be distinguishable, ..at, must be large, ie 

Another ‘feature’ is the separation A, between a cusp of q2 and the nearest ‘corner’ 
of q1 (figure 3); from (3.16), the number Ac of diffraction spots in A, is 

This must be large, so that we require 

(4.7) 

which is more restrictive than (4.5) if E < 1. 
Conditions (4.5) and (4.7) for the distinguishability of two rainbow lines are necessary 

but not sufficient, because we must also demand that the diffraction spots are sufficiently 
densely packed for the individual rainbow lines to be resolved. A reasonable condition 
for this is that the number of spots Ar in the largest Airy-function maximum of equation 
(4.1) is large. This maximum spans the argument range from about 0 to - 2 (Abramowitz 
and Stegun 1964), so that, from (4. l), we require that the deviation A, in G space from the 
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rainbow line is such that the difference in phase between the two contributing paths is 

4 J 8  @ - @  =-. 
3 2 1  

Since the problem of the width of a single rainbow maximum is essentially one- 
dimensional, we can confine our attention to the G, axis, and calculate the width A, by 
treating h, as varying only with x, so that the phase 0 in (4.2) depends only on G, and x. 
Now x is related to G, via the path equation (3.4), which now reads 

(4.9) 

Thus we can write the phase of a path as @(Gx, x(G,)); we wish to expand this function 
about the rainbow direction G,, for which in addition to (4.9) we must have (3.9), which 
in one dimension is 

(4.10) 

The expansion is tricky; for G, < G,, there are two contributing paths. Their phase 
difference turns out to be 

(4.11) 

where x, is x(G,), that is the coordinate for which h,(x) has a point of inflexion, giving a 
maximum deviation. Putting in the explicit form (4.2) for @ and using (4.8) we obtain 
for the width A, = JG,, - G,I the expression 

[4~d3h,(x,)/dx3~k(cos Bo +cos 8)]1’3 
1 - (dh,(x,)/dx) tan e A, = (4.12) 

It is not hard to show that the denominator never vanishes. For the cosine surface 
(3.10) A, becomes 

(2n/a)(8n(cos 8, +COS e)h0/j.)li3 
A, = (4.1 3) 

1 + (2nh, tan e/a) 

of diffraction spots this gives For the number 

(871(cos e, +COS 8)h,/i)’i3 
A, = 

1 + (2nh, tan e/a) 
(4.14) 

In the most favourable case 8, = 8 = 0 (ie KO = G = 0) the criterion for clearly resolv- 
ing the rainbow structure is 

h, 
7 << 1 6 ~ .  
*O 

(4.15) 

In practical cases the value of h,  might be about 0.5 A. Then if the incoming particles 
have 2, - 0.1 A, (4.14) gives &, - 6 so that the rainbow structure should be clearly 
resolved. If in addition the ‘asymmetry parameter’ c is 0.1, (4.4) gives A, - 12, so that 
g1 and ‘6; could just be distinguished along the G, axis of figure 3. However (4.6) gives 
Jtc - 1, so that the cusp structure would be confused in this case. 
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5. Inelastic and diffuse incoherence effects from random perturbations 

When a random perturbation h,(R, t )  is added to h,(R), the scattered intensity I is no 
longer given by the series (3.1) of elastic diffracted beams with quantized directions 
K = Ko+G.  Instead we use the Kirchhoff formalism of Q 2 ;  equations (2.5),  (2.8) and 
(3.2) give 

where 

J = exp(i[(Ko-K).(Rl-R,)-(oo-o)(t,-t,)+G,.R,-G,. R ,  

- (Ikoz l+  kz)(hr(R, 9 t1)- hr(R2 9 t 2 ) ) I ) .  (5.1) 

Now we must average I over the ensemble of random functions h,(R, t ) .  Because the 
perturbation of I: is the summation of a multitude of small independent effects (‘surface 
phonons’), h, is Gaussian random (Rice 1944, 1945, Longuet-Higgins 1956). Denoting 
ensemble averages by (...), we can now use standard noise theory to give, for the 
average of the function of h,  appearing in (5.1), 

(5.4) 

The mean value ( h , )  is zero by definition. Why have we chosen random noise theory 
for ensemble averaging, rather than a rigorous thermal method based on the density 
matrix (eg that of Glauber 1955)? For two reasons: first, it is not clear how the co- 
ordinates and potentials of the surface atoms define the rippling mirror surface C ; and, 
second, the crystal structure, and vibratory departures from that structure, are both 
different at the surface from the bulk (indeed it is the aim ofatomic scattering experiments 
to discover these differences). 

Several of the integrations in (5.1) can now be performed, and we get 

where we introduce the notation 

(I E ( k o z l + k ,  = ( k ~ - K ~ ) ” 2 + ( k 2 - K 2 ) 1 ’ 2  = kocosOo+kcosO. (5.6) 

For large values of R or t, C vanishes (there can be no correlation between widely 
separated events); therefore we separate the ‘tail’ of the integrals in (5.5) by writing 

(5.7) eH2q2C = 1 +(eH2q2C- 1). 
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This gives 

I(Ko,  0 , ;  K, Q) = 6(o -  coo) ISG12 e-H’q’6(K-K0 + G )  
G 

+ ISG(21r(Ko - K+ G, (o - roo), 
G 

where 

(5.8) 

These results are exact (on our model). They show that the scattered particles emerge 
in the form of: (a) coherent elastically diffracted beams whose strengths ISGI2 (cf (3.14)) 
are reduced by the familiar Debye-Waller factor ; and (b )  incoherent fans of radiation 
whose shape is determined by the correlations of h,  by the function I‘ defined by (5.9). 
If h,  is time-independent (a ‘frozen random surface’), then C depends only on R and I‘ 
contains the factor 6(Q), so that the diffraction is all elastic and the only effect of inco- 
herence is diffuse scattering between the beams at  KO + G. If on the other hand h,  is 
space-independent (so that the periodic surface ‘shivers’ up and down as a rigid whole), 
then C depends only on t and I‘ contains the factor S(Q), so that all diffraction appears in 
the beams KO +Gand the only effect of incoherence is inelastic scattering into frequencies 
w different from wo . 

If H q  - 47rH/I is small the exponential involving C in (5.9) can be expanded, and I‘ 
is easy to evaluate in terms of the phonon spectrum ; this is the ‘one-phonon case’ (Beeby 
1972). However, H is of the same order of magnitude as the amplitude of thermal 
vibrations in the solid, that is, about 0.1 A ; thus, even if I is as large as 1 A, H q  exceeds 
unity and we have to consider ‘multiphonon processes’. The novel contribution of this 
section is an approximation to the integrand of (5.9) that enables I‘ to be evaluated in 
simple closed form for any value of H q .  We introduce the ‘exponential substitution’ 

This has remarkable properties (Berry 1973); it is exact when R or t is infinite, and 
when R and t are zero ; it correctly describes the quadratic departure of the left-hand 
side from eHzq2 - 1 when R or t is small ; it is correct for all R and t if H q  is small (‘one- 
phonon case’). Thus for an (unphysical) ‘step’ correlation function, falling abruptly 
from unity to zero for one value of [RI and t ,  (5.10) is exact. For the Gaussian function C, 
whose ‘isotropic’ form is 

C(R, t )  = e-R2/2R6 e-t2/2r8 (5.11) 

(5.10) is quite accurate, as figure 6 shows. Where the exponential substitution is poor is 
when H q  is large and C is negative, but this kind of ‘anticorrelation’ would only occur 
if h, were quasi-periodic ; however, the dominant periodicity of C is already incorporated 
in h,(R), and negative values for C are unlikely. 

Now we can evaluate the incoherence function I‘ ,  in terms of the spectrum C(Q, 0) 
of the correlations of h, ; this function is defined as 

C(Q,Q) E - 11 dR 1 dt exp[i(Q . R - nt)]C(R,  t ) .  (5.12) (W3 
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X 

Figure 6. Test of exponential substitution (5.10) for Gaussian autocorrelation function : 
we plot ( e A w - x * ’ -  l ) / (eA-l)  (full lines) and e - A x ” ( l - c - A )  (dotted lines) against x for 
A = 1, 5 and 20. 

measures the strength of the Q, R Fourier component of h,(R, t ) ;  it can be called the 
‘surface phonon spectrum’. Using (5.10), (5.9) now becomes 

This is the main result of this section. 

and we get 
Two limiting cases are of interest. If Hq is small, we can expand the exponentials, 

(5.14) 

This corresponds to h,  being a weak perturbation of X. Almost all the scattering is into 
the elastic diffracted beams ; incoherence effects are small, and the scattering deviating 
by Q and R from an elastic beam comes from the ‘surface phonon’ with wavevector Q 
and frequency R 

Hq small Ir(Ql a)- H2q2C(Q, Q). 

The other limit is large Hq;  then the exponentials are negligible and 

(5.15) 

In this case h, is so large (in comparison with A) that even the incoherent scattering is 
classical. The elastic beams now have negligible intensity, because of the Debye-Waller 
factor. In this case the scattering into Q and i2 comes not from the ‘phonon’ with Q and 
R, but from that with wavevector Q/Hq and frequency R/Hq. This is understandable 
classically in terms of the atoms bouncing specularly off the moving phonons: if Q 
corresponds to a deviation A 8  = lQl/k from the diffracted beam direction, then 

(5.16) 

a ‘phonon’ with this wavenumber and amplitude H has a maximum slope At3/2, and so 
can reflect specularly by A8. If R corresponds to an energy change A E  = hR from E,, , 
then 

AV 
= -  (5.17) 

R AEh 
Hq 2Hhxmomentum 2H’ 
- h  
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where At’ is the change in speed of the atoms ; a ‘phonon’ with this frequency and ampli- 
tude H has a maximum (vertical) speed Au/2, and so can change the speed of a reflected 
particle by At‘. 

The general result (5.13) shows that the incoherence function I‘ for scattering from 
a given surface always has the same shape; only the scale changes with Hq. This might 
explain a puzzle described by Beeby (1973): the incoherent scattering seems to have the 
‘one-phonon’ form, even when ‘multiphonon processes’ are known to dominate. 

Perhaps the most useful property of (5.13) is that it suggests that the blurring in 
direction and energy of the diffracted beams gives directly the ‘surface phonon spectrum’ 
C(Q, C l )  (apart from the scaling factor Hq( 1 - e-H2q2)112 which could be obtained by 
measuring the diminution e-H2qf of the strengths of the diffracted beams). For this to 
be possible the diffracted beams should not be so broadened that they overlap signifi- 
cantly. We can examine this with the aid of the model autocorrelation function (5.1 l), 
for which the ‘phonon spectrum’ (5.12) is given by 

(5.18) 

From (5.13), we have, for the ‘breadth’ Qb of the diffuse scattering near each diffracted 
beam, 

H q  small 

(5.19) 

H q  large. 

(Qb is the ‘l/e halfwidth’ of the Q dependence of Zr.) In order to be able to invert experi- 
mental data to find C(Q, C?), Qb must be small in comparison with the separation 2n/a of 
the diffracted beams. 

Finally we recognize that diffuse scattering will blur the rainbow structure arising 
under semiclassical conditions. To resolve an individual Airy maximum, Qb must be 
small compared with AI (equation (4.13)), ie 

(5.20) 

For sufficiently small ;CO this condition is always violated. To resolve the separation 
between rainbow lines and ‘ik; (figure 3) along G, ,  Qb must be small compared with 
A, or Ay (equation (3.16)), ie 

<< 1. 
aH J 2  

41cch0R0 
(5.21) 

To resolve the separation between a cusp of W2 and the nearest part of W l ,  Qb must be 
small compared with Ac (equation (3.15)), ie 

(5.22) 

These three conditions assume that the scattering from h, is nearly classical, so that the 
‘large Hq’ limiting form in (5.19) can be used; if, however, the scattering from h, is 
weak, we must use the ‘small Hq’ form for Qb. 
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Figure 7. (Plate) (a) Caustics of refraction from periodically frosted glass surface (a  = f mm), 
using laser light (2 = 6328 A). Compare with figures 3 and 4. (b) detail near cusp showing 
quantization into diffraction spots C. 

[facing page 5831 
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6. Discussion 

The properties of rainbows predicted in $0 3 and 4 are strikingly confirmed by an optical 
analogue experiment based on refraction. Laser light transmitted through periodically 
frosted glass (such as is often used for bathroom windows) is observed on a distant screen. 
Figure 7(a) (plate) is a photograph of the resulting pattern. The two rainbow lines 
and W2 are clearly seen to have the form of figure 3, ‘Airy’ fringes (equation (4.1)) are 
clearly seen near smooth parts of V, and diffraction near each cusp of V2 is clearly of 
the same form as figure 4 ; moreover, on a very fine scale (figure 7( b) (plate)) it is possible 
to see the beginning of the quantization of G into diffraction spots, which occurs because 
the laser beam illuminates several unit cells of the glass surface. Cusped rainbows can 
also be seen if a distant point source of light is viewed with the eye placed close behind an 
irregular droplet ‘lens’ on a glass surface (for example a spectacle lens or car windscreen 
on a rainy night, or a half-empty wineglass), as explained by Berry and Nye (1975). 

In particle scattering from surfaces it would probably not be easy to resolve all the 
details of the rainbow structure. Thermal diffuse scattering should be minimized by 
operating at a low temperature, and to see diffraction effects the beam should be as 
nearly mono-energetic as possible (unless energy-selective detectors are used, so that the 
‘colours of the rainbow’ can be discerned). Finally, the de Broglie wavelength should be 
as small as possible ; this should be achieved with fast light particles rather than heavy 
particles, to minimize the effects of their impact on the surface. Despite these difficulties, 
the fine details of surface rainbows ought to be studied experimentally, because they are 
very sensitive to the details of Z, as we showed in 5 3 (this is generally true of classical 
effects, the principle being that smaller wavelengths probe finer details). 

Now we discuss the method based on equation (5.13) which we suggest might be used 
to measure the ‘phonon spectrum’ ; of course the theory is not exact : we have used the 
‘exponential substitution’ (5. lo), and the rippling-mirror model is itself an approximation, 
as is the use of Kirchhoff’s diffraction integral (2.5). Nevertheless (5.13) should be 
qualitatively correct for a wide variety of conditions, and at worst would lead to an 
‘effective surface phonon spectrum’ being reconstructed from the experimental measure- 
ments. 
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